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1 Introduction

Disease latency refers to the interval between an increment of exposure and a
subsequent change in an individual’s risk. This implies that the risk from a
certain exposure history does not depend on cumulative exposure alone, but
on the timing of exposure. It can be expected that risk varies over time in a
smooth way, and this variation can be described by a latency curve.

We explain how to apply a spline function model to data on exposure his-
tory and disease. Splines are piecewise polynomial functions [1]. Theoretically,
latency patterns could be described by estimating separate risk parameters for
exposures received in each year prior to current age. However, the number of
parameters would be large, and all the parameters could not be estimated due
to limited data and possibly correlations between exposures in subsequent time
intervals. The large number of parameters that would have to be estimated
in such a nonparametric approach can be reduced by the use of spline func-
tions. The use of cubic splines is a mild restriction because of their flexibility
in approximating smooth functions. The model that includes risk with total
cumulative exposure, which corresponds to a constant latency curve, is nested
in the spline model. This method has been applied in occupational lung can-
cer epidemiologic studies where the exposures were asbestos [2] and radon [3].
Other approaches to analyze latency in epidemiologic studies include simple ex-
ploratory techniques [4, 5] or the bilinear model developed by Langholz et al.
[6].

We briefly describe the spline function model and explain the use of EPI-
CURE code to fit this model.

2 The spline latency model

Let x(t) be the exposure during the year from t−1 to t years prior to the death
of a case or the corresponding age for a control. For example, for an individual
with attained age 52.4, x(1) is the exposure from age 51.4 through 52.4, and so
forth.
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Thus, x(1), . . . , x(40) represent the exposure history, and
∑40

t=1 x(t) is total
cumulative exposure. We start with a general model for the relative risk (RR),
RR = 1 +

∑40
t=1 θtx(t), where θ1, . . . , θ40 are parameters that fully describe the

latency curve. In general, data will be insufficient to estimate the full set of
parameters, θ1, . . . , θ40. Our approach is then to apply mild constraints to the
θt’s and estimate a functional form that describes their behavior. Suppose RR =
1+

∑40
t=1 s(t; θ)x(t), where s(t; θ) is a function of time t and a parameter vector θ

that models the year-specific ERR per unit exposure, i. e., s(t; θ) is the ERR per
unit exposure received t years in the past. The weighted sum

∑40
t=1 s(t; θ)x(t)

represents the ERR for the exposure profile x(1), . . . , x(40) compared to a zero
profile, i. e., a non-exposed individual.

A cubic B-spline is used to model s(t; θ) [7]. Splines are smooth (i. e., contin-
uously differentiable) piecewise polynomial functions. They are segmented by
interior knots. Cubic splines have certain optimum properties for the approx-
imation of curves [1]. The parameters cannot be interpreted directly, but the
estimated spline function and corresponding confidence intervals can be plotted.

Spline models with different number and placement of knots are not nested.
Therefore, the number and placement of knots cannot be evaluated by likeli-
hood ratio tests. To assure a smooth curve and to avoid overfitting, cubic splines
with a small number of interior knots (three or less) may be considered. Two
approaches can be applied to determine the placement of knots. A profile like-
lihood search can be performed for one interior knot by evaluating the deviance
of models for a series of possible knot locations. This is computationally cum-
bersome for multiple knots. Alternatively, knot positions can be selected such
that the study population accumulated approximately constant proportions of
its cumulative exposure between two adjacent knots. For a cubic spline with
one interior knot, e. g., 5 spline parameters have to be estimated and the knot
position has to be determined.

The simple linear excess relative risk (ERR) model in cumulative exposure
is included in the spline model when the function is constant over time, that is
s(t; θ) = β for all t. In this case, β is the ERR per unit exposure. A likelihood
ratio test can be performed to test if the data are consistent with no variation
in the year-specific risk, i. e., cumulative exposure. The details are as follows.

The function s(t; θ) is modeled using a B-spline as described by de Boor [1].
A spline of order k on the interval [a, b] consists of polynomials of order k on
the m + 1 segments defined by m inner knots a < t1 < . . . < tm < b. Adjacent
polynomials are smoothly joined, so that first and second derivatives agree at
the knots.

Using a numerically favorable representation of splines, the space of splines
can be spanned with m+k basis functions Bi(t), called B-splines. The knot list
has to be augmented by six associated arbitrary “slack” knots. Without loss
of generality, let t−(k−1) = b − (k − 1), t−(k−2) = b − (k − 2), . . ., t0 = b and
tm+1 = b, tm+2 = b + 1, . . ., tm+k = b + k − 1. Using a differently augmented
knot list results in different basis vectors that nonetheless span the same space
and have the same properties.
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Starting with Bi,1(t) = 1 if ti ≤ t < ti+1 and zero otherwise, the B-spline
basis functions are defined by the recurrence relation

Bi,k(t) =
t− ti

ti+k−1 − ti
Bi,k−1(t) +

ti+k − t

ti+k − ti+1
Bi+1,k−1(t).

The spline function has the form s(t; θ) =
∑m

i=−(k−1) θiBi,k(t). The spline
parameters can be estimated by maximizing the likelihood function using EPI-
CURE [8] code.

To estimate the position of one interior knot by a profile likelihood search,
the likelihood function has to be evaluated for the series a + 1, a + 2, . . . , b − 1
of possible locations of the single interior knot. It has to be noted that the
pointwise confidence intervals for the estimated spline function do not include
the added variability from estimating the knot position.

Alternatively, for m inner knots and thus m + 1 intervals knot locations
can be chosen such that each interval includes 1/(m + 1) × 100 percent of the
total cumulative study population exposure. More precisely: the jth knot tj
is chosen so that tj = max{t = a, . . . , b | ∑n

i=1

∑t
`=1 xi(`)/

∑n
i=1

∑T
`=1 xi(`) ≤

(j − 1)/(m + 1)}, where n is the number of subjects in the study.
For deriving variance formulae for the risk parameter as well as for the

weights we switch to matrix notation. Omitting the order k from the index of
the B-spline basis functions, Bi,k(t) = Bi(t), a B-spline is then represented by
the collocation matrix

B = [B1, . . . , Bm] =




B1(a) . . . Bm(a)
...

...
B1(b) . . . Bm(b)




b−a+1×m.

The spline function is given by

s(t; θ) = [B1(t), . . . , Bm(t)]θ = B(t)1×mθm×1

and the values of the spline function at all time points between a and b are
contained in

s = [s(a; θ), . . . , s(b; θ)]′ = Bθ.

The variance of the spline function values is given by

Var(s) = Var[Bθ] = BVar[θ̂]B′,

where Var[θ̂] is the variance-covariance matrix of the vector of maximum likeli-
hood estimates θ̂.

3 Program structure

The program consists of the following files

3



• calculation of spline covariates
bspline.cmd: main file for calling others
arrays.cmd: sets arrays, called by bspline.cmd
knots.cmd: augments the given knot list, called by bspline.cmd
bx1.cmd: part 1 of recursion algorithm, called by bspline.cmd
bx2.cmd: part 2 of recursion algorithm, called by bx1.cmd

• calculation of Wald confidence intervals
ci_wald.cmd: main file for calling confidence interval calculation files
ci_wald1.cmd: part 1 of recursion algorithm, called by ci_wald.cmd
ci_wald2.cmd: part 2 of recursion algorithm, called by ci_wald1.cmd

• calculation of likelihood ratio confidence intervals
ci_lr.cmd: main file for calling confidence interval calculation files
ci_lr1.cmd: part 1 of recursion algorithm, called by ci_lr.cmd
ci_lr2.cmd: part 2 of recursion algorithm, called by ci_lr1.cmd

• calculation of bootstrap confidence intervals
ci_btsp.cmd: main file for calling confidence interval calculation files
ci_btsp1.cmd: part 1 of recursion algorithm, called by ci_btsp.cmd and
ci_btsp3.cmd
ci_btsp2.cmd: part 2 of recursion algorithm, called by ci_btsp1.cmd
ci_btsp3.cmd: draw bootstrap samples, fit weight function model and
calculate weight function, called by ci_btsp.cmd

bspline.cmd has to be edited to provide the program with the knots and the
order of the spline to fit, and the name of the exposure profile variables. Run-
ning bspline.cmd performs some introductory operations like intializing arrays
(arrays.cmd) and augmenting the knot list (knots.cmd). Eventually, the spline
covariates bx1, bx2, . . . are calculated. Only the first m of these are needed.
Those not needed are set to zero. After using these variables in a model as
described below, Wald confidence intervals are calculated by running script
ci_wald.cmd. This script calls ci_wald1.cmd and ci_wald2.cmd and writes
estimated weights with standard errors and confidence intervals for each time
point a, a+1, . . ., b to the report file ci_wald.txt. These yearly log odds ratios
(and confidence limits) can be plotted against time. Similar code is available to
calculate likelihood ratio and bootstrap confidence intervals.

4 How to use the program?

First, copy the files to a directory and change the paths in the WHILE statements
to that directory.

Start any EPICURE module and load a data set that contains an exposure
profile on time since exposure scale, i. e. variables x1, x2, . . ., x50, where x10,
say, is exposure in year 10 before interview. Edit script bspline.cmd and pro-
vide the end years #a and #b of the time interval you are interested in and the
interior knots #knot1, #knot2, . . . Also provide the number of interior knots and
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the order of the spline you want to fit (2, 3, 4 for a linear, quadratic, or cubic
spline, respectively). Then identify the exposure history variables by editing
the ARRAY statement. Do all that in the head of the bspline.cmd script in the
appropriate places.

Run bspline.cmd. It creates spline covariates bx1, . . ., bx12. Only the first
m are nonzero. Fit a risk model that includes all variables bx1, . . ., bx12 in
a way that the associated parameters have numbers 2, 3, . . ., 13. This should
be possible for almost all models. An intercept %CON is usually automatically
added as parameter no. 1. If the model is stratified or a conditional regression
model, the intercept is not needed and should be fixed at zero using the com-
mand PARA 1=0@ in order to avoid that one of the spline covariates bx1, . . .,
bx12 is being aliased. You may need to specify the additive risk model using
RRISK ADD@. After fitting the model, run script ci_wald.txt. This script will
automatically pick the parameters of the spline covariates (numbers 2, . . ., 13)
and calculate estimates, standard errors and approximate normal confidence
intervals for the yearly log odds ratios, which are a linear combination of the
parameters and the B-splines, by calculating the B-splines again and using the
LINCOMB command. Note that for technical reasons the current model has to
include parameters number 1 through 13 even if there are less spline variables.
Nuisance parameters can be set to zero.

The results for each time point t between #a and #b are written to the report
file ci_wald.txt and can be plotted, e. g. using MATLAB programs splot.m
and stdplot.cmd (the latter is for plotting confidence intervals).

The file aae2tse.cmd contains EPICURE code to transform annual expo-
sures on the age-at-exposure scale to the latency scale.

Suggestions are always welcome. Send them to m.hauptmann@nki.nl.
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