API Reference¶
|
Class to store a binary alteration matrix and the corresponding alteration probability estimates. |
|
Perform many pairwise mutual exclusivity or co-occurrence tests. |
|
Class to store the results of the pairwise_discover_test function. |
|
Stack DiscoverMatrix objects row-wise. |
Alteration matrices¶
-
class
discover.
DiscoverMatrix
(events, bg=None, strata=None)¶ Class to store a binary alteration matrix and the corresponding alteration probability estimates.
- Parameters
- eventspandas.DataFrame
Binary alteration matrix.
- bgpandas.DataFrame, optional
Matrix of alteration probabilities for events. Mainly for internal use only. Use at your own risk.
- strataarray_like, optional
To perform a stratified DISCOVER test, this array should contain the strata. The length of this array must match the number of columns of events.
- Attributes
- eventsndarray
Binary alteration matrix.
- bgndarray
Matrix with estimated (background) alteration probabilities.
- rownamesndarray
Array containing the row names for events and bg.
- colnamesndarray
Array containing the column names for events and `bg.
- shapetuple of int
The shape of events and bg.
-
discover.
row_stack
(matrices)¶ Stack DiscoverMatrix objects row-wise.
- Parameters
- matricessequence of DiscoverMatrix
Sequence containing the DiscoverMatrix objects to be stacked. The matrices must have the same number of columns, and the column names must match.
- Returns
- resultDiscoverMatrix
The matrix formed by stacking the given matrices.
Pairwise co-occurrence and mutual exclusivity tests¶
-
discover.
pairwise_discover_test
(x, g=None, alternative='less', fdr_method='DBH')¶ Perform many pairwise mutual exclusivity or co-occurrence tests.
- Parameters
- xDiscoverMatrix
- garray_like, optional
An optional grouping vector for the rows of x. Pairs of rows within the same group are not tested.
- alternative{‘less’, ‘greater’}, optional
If ‘less’, a mutual-exclusivity analysis is performed, if ‘greater’ a co-occurrence analysis.
- fdr_method{‘DBH’, ‘BH’}, optional
The false discovery rate procedure used for multiple testing correction. If ‘DBH’, a Benjamini-Hochberg procedure adapted for discrete test statistics is used. If ‘BH’, the standard Benjamini-Hochberg procedure is used. The latter is much faster, but also more conservative than the discrete version.
- Returns
- resultPairwiseDiscoverResult
An object containing the test results for all pairwise combinations.
-
class
discover.pairwise.
PairwiseDiscoverResult
(pvalues, qvalues, pi0, alternative, fdr_method)¶ Class to store the results of the pairwise_discover_test function.
- Attributes
- pvalues, qvaluespandas.DataFrame
Matrices containing the pairwise DISCOVER test P values and FDR-corrected Q values. The P value corresponding to a gene pair (gene1, gene2) is stored in either pvalues.ix[gene1, gene2] or pvalues.ix[gene2, gene1]. The other entry will contain
nan
. Q values are stored in the same way.- pi0float
Estimate of the proportion of true null hypotheses.
- alternative{‘less’, ‘greater’}
If ‘less’, these results relate to mutual exclusivity, if ‘greater’ to co-occurrence.
- fdr_method{‘DBH’, ‘BH’}
The method used to estimate these results’ q-values.
-
significant_pairs
(q_threshold=0.01)¶ Return the gene pairs significant at a specified maximum false discovery rate.
- Parameters
- q_thresholdfloat, optional
The maximum false discovery rate (default 0.01) for test results included in the result.
- Returns
- resultpandas.DataFrame
DataFrame with significant gene pairs. The gene names are stored in the columns
gene1
andgene2
. The columnspvalue
andqvalue
contain the DISCOVER test P value and the FDR-corrected Q value.
Groupwise mutual exclusivity tests¶
-
discover.
groupwise_discover_test
(events, method='impurity')¶ Perform a groupwise mutual exclusivity test.
- Parameters
- eventsDiscoverMatrix
Matrix with rows corresponding to the genes in the gene set to be tested.
- method{‘impurity’, ‘coverage’, ‘exclusivity’}
The mutual exclusivity statistic to estimate significance for.
- Returns
- pvaluefloat
The P value of the groupwise DISCOVER test.